
TIME-EFFICIENT NURBS CURVE EVALUATION ALGORITHMS

Kestutis Jankauskas

Kaunas University of Technology, Department of Multimedia Engineering,
 Studentu st. 50, LT-51368 Kaunas, Lithuania, kestutis.jankauskas@ktu.lt

Abstract: This paper analyses time-efficiency of existing NURBS evaluation algorithms. The most
competitive computation methods are modified to achieve even better performance. Performance tests
indicate that NURBS curve evaluation time-efficiency can be improved in uniform and non-rational B-
spline cases. Suggested optimizations are very effective in the evaluation of higher degree splines with a
larger number of control points.

Keywords: NURBS, curve evaluation, inverted triangular scheme

1 Introduction
NURBS stands for Non-Uniform Rational B-Spline. It is the most popular spline representation in

today’s commercial CAD packages [1, 4, 5, 8, 10]. NURBS is able to represent large variety of shapes, like
circles, hyperbolas, parabolas, and still preserves mathematical exactness [5].

Generally, a spline is a smooth curve interpolated among given control points. Unfortunately, a spline
cannot be constructed in the model space directly. Each point on NURBS curve or surface must be calculated
from the set of control points, knot vector, and basis function of specific degree. This process is called NURBS
evaluation [1, 5, 8].

In the following sections we will discuss theoretical aspects of NURBS as well as existing evaluation
algorithms. Moreover, we will introduce certain modified evaluation algorithms and strategies for uniform and
non-rational cases that improve evaluation performance. Finally we will compare actual time-efficiency of
suggested method implementations.

2 NURBS in Theory
Acronym NURBS defines special properties of this particular spline: (1) Non-Uniform, (2) Rational, (3)

B-Spline. Let us clarify those properties by starting from the last one. It has the basis function of B-spline, which
ensures smooth blending [2] of control point influence over the curve. All theory regarding a regular B-spline is
covered in Section 2.1. Rational property gives more flexibility to a spline [4, 5, 10], but also increases
complexity. It is achieved by adding weights to control points. Rational B-spline is presented in Section 2.2.
Finally, introducing the editable knot vector to the spline concept, allows usage of non-uniform piece-wise
features [1, 10]. They are covered in Section 2.3.

2.1 B-Spline

Regular B-spline is defined by a set of control points iP , a knot vector }{ juU = , and degree p , where

1..0 −= ni , mj ..1,0= and 1++= pnm [1, 4, 6, 9]. Control points are located in the multi-dimensional space

we refer to as the model space. The spline interpolates between control points with the help of the basis function:

 ∑
<

=

=
ni

i
ipi PuNuC

0
,)()(, (1)

where p is the degree of the basis function, u is a coordinate in the parametric spline space and)(uC is

point on curve in the model space. Accordingly, any point on the curve is obtained by summing multiplications
of control points iP and basis functions)(, uN pi . The basis function is calculated from the expression:

 <≤

= +
otherwise

uuu if
uN 1ii

i 0
1

)(0, , (2)

)()()(1,1
11

1
1,, uN

uu

uu
uN

uu

uu
uN pi

ipi

pi
pi

ipi

i
pi −+

+++

++
−

+ −

−
+

−

−
= , (3)

where u is the coordinate in the parametric spline space and ju are values from the knot vector U .

The last expression is referred to as Cox-de Boor recursion formula [1, 3]. It denotes that basis function domains
are divided by elements of the knot vector, i.e. knots [1, 9]. It is also known that the sum of all basis functions

)(, uN pi equals one [7]. The sum of)(, uN pi in the interval kipk ≤≤− equals one as well, where

1kk uuu +<≤ (the partition of unity [2, 6]):

- 60 -

 1)(, =∑
≤

−=

ki

pki
pi uN . (4)

As the basis function is non-negative, it means that all basis functions)(, uN pi outside the interval

kipk ≤≤− are zero. Consequently, all multiplications ipi PuN)(, outside the same interval are zero. Thus,

such control points has no effect on the portion of the curve within 1kk uuu +<≤ . So any point on the curve

)(uC of the uniform B-spline is affected by 1+p control points, with the exception of)0(C and)1(C . These

special cases can be explained through analysis of the knot vector.

The knot vector is a set of non-decreasing values 1+≤ jj uu , where 1..1,0 −= mj and 1++= pnm . In

this paper we use a normalized knot vector form, so the parametric space of the B-spline and knot vector values
are bounded by 0 and 1. Also, it is a common practice to use the clamped knot vector, where the first 1+p

values equal 0 and the last 1+p values equal 1 [1, 3, 10]:

 }1.....0...{ 112110 ====≤≤≤≤≤===== +++−++ pnpnnnppp uuuuuuuuuU . (5)

Let us examine the example of a cubic B-spline (3=p), defined by eight control points (8=n) and

12=m uniform knots: }1111806040200000{ , , , , ., ., ., ., , , , U = . Basis functions are given in Figure 2. For

3.0=u functions)3.0(3,1N ,)3.0(3,2N ,)3.0(3,3N and)3.0(3,4N are greater than zero, other functions are zero.

This means that a point on the curve)3.0(C is affected by the position of four control points: 1P , 2P , 3P , and

4P . Also function)3.0(3,2N and)3.0(3,3N values are significantly greater than values of)3.0(3,1N and

)3.0(3,4N . This suggests that the point)3.0(C is closer to 2P and 3P than to 1P and 4P .

In the case when u is in the position of the knot 4.05 == uu we have only three non-zero functions:

0)3.0(3,2 ≠N , 0)3.0(3,3 ≠N and 0)3.0(3,4 ≠N . Consequently)4.0(C is affected by three control points: 2P ,

3P , and 4P . So, a point on the curve)(uC is affected by 1+− sp control points, where s is knot multiplicity

at u . Therefore the curve becomes spC − continuous at this point (here the symbol C refers to spline continuity
and has a different meaning than)(uC , see Section 2.3 for more details) [1, 9].

Because of the clamped knot vector the first curve point)0(C is affected only by one control point 0P .

The last curve point)1(C is affected by the control point 1−nP respectively:

 0)0(PC = , (6)

 1)1(−= nPC . (7)

2.2 Rational B-Spline
Regular B-spline is quite powerful interpolation tool, but it lacks flexibility. B-spline can not represent

conic sections, like circles [4, 5, 9]. Therefore a rational form is used to cover these cases [4, 10]:

 ∑
∑

<

=
<

=

=
ni

i
iipini

i
ipi

PwuN

wuN

uC
0

,

0
,

)(

)(

1
)(, (8)

where the weight 0>iw is attached to every control point.

Figure 1. A circle represented by four rational B-splines

- 61 -

Let us take a look at the example of a circle represented as four rational B-splines in Figure 1. Each
quarter of the circle is constructed from separate rational quadratic B-spline defined by control point sequences:

},,{ 210 PPP , },,{ 432 PPP , },,{ 654 PPP , },,{ 076 PPP . The weights of the first and the last control points in each

sequence are 1. The weight of the middle control point is 2/2 [4]. Greater weights pull the curve towards the
control point and lesser weights push the curve away [1, 4, 10]. Naturally, regular B-spline is a special case of
rational B-spline when all weights are equal to 1.

2.3 Non-uniform Rational B-Spline
The term of uniformity is used to define a relation between the sequence of control points and the

parametric spline space. As mentioned in Section 2.1, control point influence over the curve is defined by basis
functions and function domains are divided by knots [9]. This means that property of uniformity is embedded
into the knot vector [1]. Until now we considered a knot vector to be clamped and uniform:

 }1.........0...{ 10 ===
−
−

===== ++ pnnip uu
pn

pi
uuuU , (9)

where nip <≤+1 . Such a knot sequence divides whole parametric space into uniform intervals. Each

of intervals contains 1+p non-zero basis functions, thus the curve is affected by 1+p control points in this

interval (see Section 2.1). In general case, knots can be distributed in non-uniform manner. However a knot
sequence must be non-decreasing, as shown in the expression (5).

Let us take the example of the knot vector }1111806040200000{ , , , , ., ., ., ., , , , U = and modify it by

setting 2.0456 === uuu : }1111802020200000{ , , , , ., ., ., ., , , , U = . Knot multiplicity of ps = at 2.0=u

leaves only one non-zero function at this point (see Figure 3), which suggest that)2.0(C is affected by single

control point. Therefore, the curve goes through this control point: 3)2.0(PC = . In other words, the knot of

multiplic ity s reduces curve continuity at that knot by s [3, 10]. In this example the curve becomes 0CC sp =−
continuous at 2.0=u . Further increment of multiplicity is pointless, because it excludes control points from
affecting the curve.

NURBS is powerful enough to compose any shape. Recall the example of the circle in Figure 1. It was
represented by four uniform rational B-splines. Knot multiplication in the knot vector allows the construction of
such a shape from single quadratic NURBS curve. The same control points with weights are used in the
sequence },,,,,,,,{ 076543210 PPPPPPPPP . The last control point is the same as the first to close the curve.

Instead of multiple control points, multiple knots are employed: , , , , , , , , , U 75.075.05.05.025.025.0000{=

}111 , , [4]. Behavior of basis functions is depicted in Figure 4. Notice that every quarter of the circle is

represented by single non-zero knot interval and each quarter is independent.

Figure 2. Basis functions of uniform cubic B-spline defined by eight control points

Figure 3. Basis functions of cubic B-spline with knot multiplicity of three at 0.2

- 62 -

Figure 4. Basis functions of quadratic NURBS defined by the knot vector U={0, 0, 0, 1/4, 1/4, 2/4, 2/4, 3/4, 3/4, 1, 1, 1}

3 NURBS evaluation algorithms
To represent NURBS in the model space (Cartesian multi-dimensional space) as a curve, the spline

must be evaluated at multiple u , where 10 ≤≤ u . According to the expression (8) basis functions are necessary
in order to do so. Several basis function calculation methods are covered in Section 3.1. Once basis functions are
known, they can be used to determine a point on the curve. The description of single point evaluation algorithms
can be found in Section 3.2. Finally, entire NURBS curve evaluation strategies are presented in Section 3.3.

3.1 Basis function
As we already discussed in Section 2.1, calculation of all basis functions is not necessary. There are

only 1+− sp non-zero basis functions at any u , where p is the degree of the basis function and s is knot

multiplicity at u . So we are to obtain all basis functions from)(, uN ppk− to)(, uN pk , where 1kk uuu +<≤ .

3.1.1 Cox-de Boor recursion
The most obvious solution is to use a standard Cox-de Boor recursion formula, given in the expression

(2) and (3). Although this formula is simple to understand and easy to implement, [6] and [9] sources state that it
involves many unnecessary calculations. Figure 5 illustrates how)(, uN pk is obtained.

Figure 5. Computation of non-zero basis functions

Zero functions are marked in blue. They have no effect on higher degree functions in successive
iterations, because multiplication by zero is zero (blue arrows). In the example of

}1111806040200000{ , , , , ., ., ., ., , , , U = , where 3=p and 4=k (u is in the interval 5uuu4 <≤), the

recursive formula returns non-zero values of)(3,1 uN ,)(3,2 uN ,)(3,3 uN , and)(3,4 uN . Accordingly to the

expression (3), to obtain)(3,1 uN the algorithm calculates)(2,1 uN and)(2,2 uN . To acquire second degree

functions, the recursion must obtain first degree functions)(1,1 uN ,)(1,2 uN and)(1,2 uN ,)(1,3 uN . Finally, first

degree functions is calculated from zero degree functions:)(1,1 uN is acquired from)(0,1 uN and)(0,2 uN ,

)(1,2 uN is acquired from)(0,2 uN and)(0,3 uN ,)(1,3 uN is acquired from)(0,3 uN and)(0,4 uN . Notice that

)(1,2 uN is calculated twice, so)(0,2 uN as well as)(0,3 uN is actually calculated three times. Moreover, only

)(0,4 uN is non-zero among all zero degree functions.

This example illustrates how Cox-de Boor recursion formula is overloaded with unnecessary
calculations. Naturally, the evaluation of higher degree B-spline basis functions yields even more unnecessary
iterations. Also the expression (3) is numerically unstable, because of 0/0 cases [5]. Another drawback is noted

- 63 -

in [2]. The recursion formula gives an incorrect result when 1=u . The last point on the curve is always
}0,0,0{)1(C = . To overcome this problem, we simply use expressions (6) and (7) as special cases, so)0(C and

)1(C can be found without the calculation of basis functions.

3.1.2 Inverted Triangular Scheme
To avoid unnecessary calculations, authors in [6] present the algorithm based ITS (inverted triangular

scheme). It is given as Basis_ITS0 function in pseudo code. It calculates functions from lower to higher degree
in contrast to the recursive algorithm. Also, they suggest rearrangement of the expression (3) to remove
operation duplications:

)()()(1,1
1

1
1,

1

1
, uN

LR

R
uN

LR

L
uN pjk

jj

j
pjk

jj

j
pjk −+−

+

+
−−

+

+
− +

+
+

= , (10)

 where jkj uuL −+−= 1 and uuR jkj −= + . (11)

Basis_ITS0(k, p, u)
1. N[0] = 1
2. for (j = 1; j <= p; j++)

2.1. sa ved = 0
2.2. L[j] = u - knots[k + 1 - j]
2.3. R[j] = knots[k + j] - u
2.4. for (r = 0; r < j; r++)

2.4.1 . tmp = N[r] / (R[r + 1] + L[j - r])
2.4.2. N[r] = saved + R[r + 1] * tmp
2.4.3. saved = L[j - r] * tmp

2.5. N[j] = saved
3. return N

Note that k should already be known, where k defines the knot interval in which u resides. Therefore,
the method FindKnotSpan (available in [6]) must be applied to determine k before the implementation of
Basis_ITS0.

3.1.3 Modified Inverted Triangular Scheme

We noticed another relation. Let the right part of the sum in)(, uN pi be equal A , then the left part of

the sum in)(,1 uN pi− is always A−1 . Based on this observation, we propose another modification of the

expression (3):

)()1()()()(1,1,11,,, uNAuNuAuN pipipipipi −++− ⋅−+⋅= , (12)

 where)/()()(, ipiipi uuuuuA −−= + and kipk ≤≤− . (13)

The example of non-zero cubic basis function calculation is given in Table 1, followed by modified ITS
algorithms. As u value is fixed we omit the notation of)(u .

Table 1. Non-zero basis function calculations for cubic B-spline, using a modified ITS

i 0=p 1=p 2=p 3=p

3−k
2,23,23,3)1(−−− −= kkk NAN

2−k 1,12,12,2)1(−−− −= kkk NAN 2,13,12,23,23,2)1(−−−−− −+= kkkkk NANAN

1−k 0,1,1,1)1(kkk NAN −=− 1,2,1,12,12,1)1(kkkkk NANAN −+= −−− 2,3,2,13,13,1)1(kkkkk NANAN −+= −−−

k 10, =kN 0,1,1, kkk NAN = 1,2,2, kkk NAN =
2,3,3, kkk NAN =

Basis_ITS1(k, p, u)
1. N[0] = 1
2. for (i = 1; i <= p; i++)

2.1. fo r (j = i – 1; j >= 0; j--)
2.1.1 . A = (u - knots[k - j]) /

(knots[k + i - j] - knots[k - j])
2.1.2. tmp = N[j] * A
2.1.3. N[j + 1] += N[j] - tmp
2.1.4. N[j] = tmp

3. return N

Basis_ITSU(k, p, u)
1. N[0] = 1
2. M = (u - knots[k])/(knots[k+1]-knots[k])
3. for (i = 1; i <= p; i++)

3.1. fo r (j = i – 1; j >= 0; j--)
3.1.1 . tmp = N[j] * (M + j)/i
3.1.2. N[j + 1] += N[j] - tmp
3.1.3. N[j] = tmp

4. return N

These algorithms return basis functions in reversed order: from)(, uN pk to)(, uN ppk− . Basis_ITS0

and Basis_ITS1 algorithms are suitable for any NURBS. Only few CAD and CAM applications allow editing

- 64 -

the knot vector, because such modification is not intuitive [10]. Hence, in many cases NURBS stays uniform.
From the expression (9) it is obvious that every non-zero interval in the knot vector equals)/(1 pn − . Let us

presume that)/()(11, kkkk uuuuAM −−== + . It is easy to calculate that pMA pk /, = , pMA pk /)1(,1 +=− ,

pMA pk /)2(,2 +=− . So, in case of the uniform knot vector, the expression (13) can be simplified:

p

jM
A pjk

+
=− , . (14)

Plugging the expression (13) into the last row of Table 1 indicates that calculation of a non-zero
function set uses knots from 1+− pku to pku + . So the equation (14) is valid when all knot intervals from 1+− pku to

pku + are equal. In the case of the clamped knot vector, the first p and last p knot intervals are zero. As the

first uniform interval begins at pu and the last uniform interval ends at nu , the expression (14) can be used for

all intervals from 1−+ ppu to pnu − . This means that the ITS algorithm can be written as Basis_ITSU for all

1+<≤ kk uuu , where:

 pnkp −≤≤−12 . (15)

3.2 Single point on curve
Each of non-zero functions defines how strongly a certain control point affects a curve (see Section

2.1). According to the expression (8), the strength of the effect is also modified by weights of control points (see
Section 2.2). In order to calculate)(uC , we require a sum of all iipi PwuN)(, divided by the sum of ipi wuN)(, ,

where kipk ≤≤− and 1+<≤ kk uuu . Following algorithms calculate a point on the curve, when basis

functions are known. Thus GetPoint0 should be used after Basis_ITS0. Because of the inverted function order
in Basis_ITS1 and in Basis_ITSU, those algorithms should be followed by GetPoint1.

GetPoint0(N, k)
1. Nsum = 0
2. Cu = {0, 0, 0}
3. for (i = 0; i <= p; i++)

3.1. Nsum += N[i] *= P[k - p + i].Weigth
3.2. Cu += N[i] * P[k - p + i].To3D()

4. return Cu/Nsum

GetPoint1(N, k)
1. Nsum = 0
2. Cu = {0, 0, 0}
3. for (i = 0; i <= p; i++)

3.1. Nsum += N[i] *= P[k - i].Weigth
3.2. Cu += N[i] * P[k - i].To3D()

4. return Cu/Nsum

The method To3D() returns },,{ zyx coordinates and ignores the control point’s weight. If a spline is

regular B-spline and all weights equal 1, we can use the expression (1) instead of the expression (8) to find a
certain point on the curve. In such case GetPoint1 algorithm can be simplified to GetPoint_NR1:

GetPoint_NR1(N, k)
1. Cu = {0, 0, 0}
2. for (i = 0; i <= p; i++)

2.1. re sult += N[i] * P[k - i].To3D()
3. return Cu

3.2.1 De Boor’s algorithm
There are several B-spline evaluation techniques that do not need basis functions to determine a point

on the curve, like de Boor’s algorithm [9]. De Boor’s algorithm is based on observation that)(uC is positioned

at the location of the control point pkP − , when kuu = and knot multiplicity at u equals p (see section 2.3).

How do we make desired knot multiplicity at any u ? The author in [9] suggests a multiple insertion of a knot at
u . The insertion of an additional knot also means the insertion of a new control point, thus after p iterations the

last control point is exactly at the position of)(uC . In case when u is already at the position of the knot ku

with multiplicity s , only sp − iterations of the insertion are required. The position of every new control point

can be found from expressions [3, 9]:

 w
ii

w
ii

w
i PaPaQ +−= −1)1(, (16)

 where
ipi

i
i uu

uu
a

−

−
=

+

 for all kipk ≤≤+− 1 . (17)

However, the actual insertion of knots is not performed, because this would lead to the modification of
the control point sequence during the evaluation. Thus the sequence of new control points is processed in a

- 65 -

temporary array. The expression (16) requires control points to be converted to a homogenous 4D coordinate

system by multiplying coordinates by weight: },,,{ iiiiiii
w

i wzwywxwP ⋅⋅⋅= . This task is performed by

ConvertTo4D() method. The conversion back to Cartesian 3D coordinate system is performed by dividing
coordinates by weight },/,/,/{ iiiiiiii wwzwywxP = in ConvertTo3D() method.

GetPoint_DeBoor(k, u)
1. s = 0
2. while (k >= s && knots[k - s] == u)

2.1. s++
3. Q = new ControlPoint [p - s + 1]
4. for (i = k - p; i <= k - s; i++)

4.1. Q[i - k + p] = P[i].ConverTo4D()
5. for (r = 1; r <= p - s; r++)

5.1. fo r (i = k - s; i >= k - p + r; i--)
5.1. 1. a = (u - knots[i]) / (knots[i + p - r + 1] - knots[i])
5.1.2. j = i - k + p
5.1.3. Q[j] = (1 - a) * Q[j - 1] + a * Q[j]

6. return Q[p-s].ConvertTo3D().To3D()

3.3 Multiple Points on Curve
Generally, evaluation of multiple points can be done using single point evaluation several times. But

several optimizations can be made. To evaluate entire NURBS curve, we must obtain multiple points)(uC ,

where 1,1...2,,0 u u u u ∆−∆∆= and)1/(1 −=∆ stepsu is the step in the parametric spline space. Under these

conditions the initial knot interval is 1+<≤ pp uuu , thus initial pk = . Successive k values can be traced easily,

so the procedure FindKnotSpan in not needed. Also 0=u and 1=u are handled as special cases (see Section
3.1) and calculated from expressions (6) and (7). The following algorithm evaluates the number of points equal
to steps on any NURBS curve.

NURBS_ITS0(steps)
1. ste p = 1 / (steps - 1)
2. Cu = new Point [steps]
3. Cu[0] = P[0].To3D()
4. iter = 1
5. u = knots[p] + step
6. for (k = p; k < n; k++)

6.1. while (knots[k] == knots[k + 1] && knots[k] < 1)
6.1. 1. k++

6.2. while (u < knots[k + 1])
6.2.1 . N = Basis_ITS0(k, p, u)
6.2.2. Cu[iter] = GetPoint0(N, k)
6.2.3. iter++
6.2.4. u += step

7. C[steps - 1] = P[n - 1].To3D()
8. return Cu

Algorithms in steps 6.2.1 and 6.2.2 can be replaced by modified Basis_ITS1 and GetPoint1
respectively. If a spline is known to be non-rational then GetPoint_NR1 can be used in step 6.2.2. If a spline is
uniform it is possible to optimize this algorithm even further.

3.3.1 Evaluation of Uniform B-spline Curve
Recall Section 3.1.3 and expressions (15), which states that Basis_ITSU can be used instead of

Basis_ITS1 within bounds of pnkp −≤≤−12 . Figure 6 illustrates the basis functions of the cubic uniform B-

spline defined by 17=m knots. Notice that)1()0(3,123,0 NN = ,)95.0()05.0(3,113,1 NN = ,

)9.0()1.0(3,103,2 NN = and so on. Clearly, certain basis functions of the uniform B-spline are symmetrical to

each other. Actually, any function)(, uN pi can be reflected to)1(,1 uN pin −−− at the middle point of the

parametric space. We refer to this operation as to ref :

)1()(: ,1, uNuNref pinpi −→ −− , (18)

 where kipk ≤≤− . (19)

- 66 -

The set of non-zero functions)(, uN ppk− …)(, uN pk at 5.00 1 <<≤≤ +kk uuu can be cloned to

)1(,1 uN pkn −−− …)1(,1 uN ppkn −−+− . In other words, there is no need to calculate non-zero functions for the

second half of the parametric space, because they can be obtained from the first one.

Figure 6. Basis functions of cubic uniform B-spline defined by 13 control points (17 knots)

Figure 6 also depicts another important property of uniform B-spline. Pay attention to functions marked
as red, they are identical:)8.0(...)4.0()3.0()2.0(3,93,53,43,3 NNNN ==== . The set of non-zero functions at

22.0=u consists of four functions:)22.0(3,2N ,)22.0(3,3N ,)22.0(3,4N , and)22.0(3,5N . There is a set of

functions with the same values at each interval ku , where 105 ≤≤ k :)22.0(3,2N =)32.0(3,3N = ... =

)72.0(3,7N ,)22.0(3,3N =)32.0(3,4N = ... =)72.0(3,8N ,)22.0(3,4N =)32.0(3,5N = ... =)72.0(3,9N , and

)22.0(3,5N =)32.0(3,6N = ... =)72.0(3,10N . Obviously, non-zero functions at arbitrary pp uuu 212 <≤− can be

repeated at ()pnju −+ / , where)12()(1 −−−≤≤ ppnj . In this paper we refer to this operation as to rep :

))/(()(: ,, pnjuNuNrep pjipi −+→ + , (20)

 where 131 +−≤≤ pnj for all pip 21 <≤− . (21)

However, u values must be distributed in specific manner, in order to hit a required u−1 or
()pnju −+ / . This means that the chosen step u∆ must divide each non-zero knot interval into the same

number of equal subintervals. If we consider that Ν∈κ is a natural number, then step u∆ must satisfy:

κ)(

1

pn
u

−
=∆ . (22)

3.3.2 Multiple Point on Curve Evaluation Strategies
We suggest several NURBS evaluations strategies regarding given observations in Table 2. The strategy

name corresponds to the case of the spline and to the basis function algorithm. The interval row indicates the
bounds of the parametric space for basis clone operations that are given in the last table row (see expressions
(18), (19), (20), and (21)).

Table 2. NURBS curve evaluation strategies

Strategy Case Interval Basis method Get point method Basis clone operation

NURBS_ITS0 General 10 ≤≤ u Basis_ITS0 GetPoint0

NURBS_ITS1 General 10 ≤≤ u Basis_ITS1 GetPoint1

URBS_ITS1 Uniform
5.00 <≤ u Basis_ITS1 GetPoint1))(()1(,,1 uNrefuN pipin =−−−

5.0=u Basis_ITS1 GetPoint1

URBS_ITS1+U
Uniform

13 −≥ pn

120 −<≤ puu Basis_ITS1 GetPoint1))(()1(,,1 uNrefuN pipin =−−−

pp uuu 212 <≤− Basis_ITSU GetPoint1))(())/((,, uNreppnjuN pipji =−++

UBS_ITS1+U

Uniform

Non-rational

13 −≥ pn

120 −<≤ puu Basis_ITS1 GetPoint_NR1))(()1(,,1 uNrefuN pipin =−−−

pp uuu 212 <≤− Basis_ITSU GetPoint_NR1))(())/((,, uNreppnjuN pipji =−++

Note that in order to apply uniform case optimizations, the step size u∆ must be set accordingly to the
expression (22) before evaluation. An uniform non-rational spline is evaluated using the simplified method
GetPoint_NR1 instead of GetPoint1 (expression (1) instead of (8)).

- 67 -

4 Results
Algorithms given in Section 3 were implemented using C# programming language and .NET

framework. The performance tests were acquired on Intel Core2 Duo 1.86 GHz x2 CPU, 3.GB RAM machine.
The evaluation of single point or function takes only few nanoseconds. This makes the comparison of evaluation
time-effectiveness hardly possible. Therefore all evaluation algorithms were applied 105 times at different u .
This procedure was performed several times and average calculation times were recorded.

Recursive Cox-de Boor, Basis_ITS0, Basis_ITS1, and Basis_ITSU basis function evaluation
algorithms were tested on the uniform 27 control point B-spline. The same algorithms and de Boor’s knot
insertion method were employed to determine a single point on the curve. Calculation times are given in Figure 7
and Figure 8 respectively.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8
Degree

M
ilis

ec
on

ds

Recursive

ITS0

ITS1

ITSU

n = 27

p Recursive ITS0 ITS1 ITSU
1 37 20 15 15
2 135 34 26 19
3 385 55 46 30
4 940 79 78 42
5 2105 100 103 58
6 4806 129 142 77
7 10470 156 176 92
8 24751 195 224 111

Figure 7. NURBS basis function calculation times in milliseconds

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8
Degree

M
ilis

ec
on

ds

Recursive

DeBoor

ITS0

ITS1

ITSU

n = 27

p Recursive DeBoor ITS0 ITS1 ITSU
1 206 251 206 187 179
2 340 404 247 233 225
3 593 667 268 277 266
4 1128 1022 320 311 279
5 2311 1458 370 366 310
6 4927 1968 429 431 360
7 10976 2566 481 496 402
8 25855 3253 543 574 460

Figure 8. NURBS single point on curve evaluation times in milliseconds

Calculation time of the recursive Cox-de Boor algorithm grows rapidly for every successive degree of
B-spline. However, the ITS is noticeably less affected by the degree increment. De Boor’s knot insertion should
be fast, because it has no basis function calculation phase. According to Figure 8, GetPoint_DeBoor overtakes
recursive algorithm only when 4≥p , but is left far behind by the ITS. This happens because of a large number

of scalar multiplications and conversions from 3D to 4D and back.

The ITS takes less time in the basis function determination phase than in the position acquisition phase
even when 8=p . Therefore performances of single point evaluation using Basis_ITS0, Basis_ITS1 or

Basis_ITSU are very similar. Due to poor performance of recursive Cox-de Boor and de Boor’s knot insertion
algorithms they were not included in multiple point evaluation. The evaluation of multiple points over entire 27
control point NURBS curve was carried out using strategies given in Section 3.3.2. Results are given in Figure 9.

The same strategies were applied to 18=n control point and 9=n control point curves. Performance
patterns remain the same as in Figure 9, but URBS_ITS1+U and UBS_ITS1+U provided less time economy. In
these cases, less control points mean fewer intervals where the operation rep can be applied (see expressions

(20) and (21)).

- 68 -

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8
Degree

M
ilis

ec
on

ds

NURBS_ITS0

NURBS_ITS1

URBS_ITS1

URBS_ITS1+U

UBS_ITS1+U

n = 27

p NURBS_
ITS0

NURBS_
ITS1

URBS_
ITS1

URBS_
ITS1+U

UBS_
ITS1+U

1 170 162 157 156 142
2 211 213 197 189 170

3 234 256 240 225 203
4 279 295 271 252 231
5 326 348 295 265 237
6 382 409 342 310 278
7 433 479 389 361 322
8 491 557 444 424 381

Figure 9. NURBS multiple points on curve evaluation times in milliseconds

The implementation of ref and rep operations in evaluation of uniform rational B-spline saved from

3.7% to 24.6% of calculation time (compare URBS_ITS1+U and NURBS_ITS1). The algorithm designed for
uniform non-rational B-spline saved from 12.4% to 32.8% of calculation time. Also, URBS_ITS1+U and
UBS_ITS1+U were respectively up to 18.7% and 27.3% more time-efficient in comparison to NURBS_ITS0.

The evaluation of higher degree basis functions takes longer. In these cases ref and rep operations can

save more time (compare URBS_ITS1+U and NURBS_ITS1 in Figure 9). There is one more fact to be taken
into consideration. The percentage of saved calculation time depends on the number of NURBS control points.
Accordingly to the expression (21), there are 13 +− pn knot intervals where rep operation can be applied. If

13 −< pn , this optimization can not be implemented even if B-spline is uniform.

5 Conclusions
In this paper we analyzed three already known NURBS evaluation algorithms. Test results showed that

the recursive Cox-de Boor formula is highly ineffective especially in the evaluation of higher degree splines.
Although de Boor’s knot insertion method performed better while evaluating splines of the fourth and higher
degree, it was significantly overtaken by inverted triangular scheme in all cases.

Due to this discovery we composed several modifications of the inverted triangular scheme and few
evaluation strategies designed for special cases of NURBS. Accordingly to the test results, the presented
strategies saved up to 24.6% of evaluation time in the case of uniform B-spline, and up to 32.8% in the case of
uniform non-rational B-spline. A significant gain of performance was observed during NURBS evaluation of the
degree 4>p with the number of control points greater or equal to 13 −p .

The stated facts lead to a conclusion that time-efficiency of NURBS curve evaluation based on the
inverted triangular scheme can be improved. This is achieved by recognizing uniform and non-rational cases and
implementing evaluation strategies presented in this paper. Optimizations are especially effective in the
evaluation of higher degree splines with a larger number of control points.

References
[1] Andersson F., Berit K. Bezier and B-spline Technology. Master of Science Thesis. 2003.

[2] Deng J. J. Theory of a B-Spline Basis Function. International Journal of Computer Mathematics. 2003, volume 80,
issue 3, pages 649 - 664.

[3] Farin G. Curves and Surfaces for CAGD: A Practical Guide 5th Edition. Morgan Kaufman Publishers. 2002, pages
135 - 146.

[4] Fisher J., Lowther J., Shene C. K. If You Know B-Splines Well, You Also Know NURBS!. ACM SIGCSE
Bulletin. 2004, volume 36, issue 1, pages 343 - 347.

[5] Krishnamurthy A., Khardekar R., McMains S. Direct Evaluation of NURBS Curves and Surfaces on the GPU.
Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling. 2007, pages 329 - 334.

[6] Piegl L., Tiller W. The NURBS Book 2nd Edition. Springer. 1999, pages 67 - 78.

[7] Plukas K. Skaitiniai metodai ir algoritmai, Naujas Lankas. 2001, pages 319 - 326.

[8] Sánchez H., Moreno A., Oyarzun D., García-Alonso A. Evaluation of NURBS surfaces: an overview based on
runtime efficiency. WSCG SHORT Communication Papers Proceedings, Science Press. 2004, pages 235 - 242.

[9] Shene C. K. CS3621 Introduction to Computing with Geometry Notes. 1997 - 2008. Online access:
http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/

[10] Xie H., Qin H. Automatic Knot Determination of NURBS for Interactive Geometric Design. Proceedings of the
International Conference on Shape Modeling & Applications. 2001, pages 267 - 277.

- 69 -

	1_p2
	2_p63
	3_p15
	4_p64
	5_p50
	6_p72
	7_p51
	8_p37
	9_p19
	10_p17
	11_p32
	13_p7

