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Abstract: This paper analyses time-efficiency of existing NURBS evaluation algorithms. The most
competitive computation methods are modified to achieve even better performance. Performance tests
indicate that NURBS curve evaluation time-efficiency can be improved in uniform and non-rational B-
spline cases. Suggested optimizations are very effective in the evaluation of higher degree splines with a
larger number of control points.
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1 Introduction

NURBS stands for Non-Uniform Rational B-Spline. It is the most popular spline representation in
today’s commercial CAD packages [1, 4, 5, 8, 10]. NURBS is able to represent large variety of shapes, like
circles, hyperbolas, parabolas, and still preserves mathematical exactness [5].

Generally, a spline is a smooth curve interpolated among given control points. Unfortunately, a spline
cannot be constructed in the model space directly. Each point on NURBS curve or surface must be calculated
from the set of control points, knot vector, and basis function of specific degree. This process is called NURBS
evaluation [1, 5, 8].

In the following sections we will discuss theoretical aspects of NURBS as well as existing evaluation
algorithms. Moreover, we will introduce certain modified evaluation algorithms and strategies for uniform and
non-rational cases that improve evaluation performance. Finally we will compare actual time-efficiency of
suggested method implementations.

2 NURBS in Theory

Acronym NURBS defines special properties of this particular spline: (1) Non-Uniform, (2) Rational, (3)
B-Sdine. Let us clarify those properties by starting from the last one. It has the basis function of B-spline, which
ensures smooth blending [2] of control point influence over the curve. All theory regarding a regular B-spline is
covered in Section 2.1. Rational property gives more flexibility to a spline [4, 5, 10], but also increases
complexity. It is achieved by adding weights to control points. Rational B-spline is presented in Section 2.2.
Finally, introducing the editable knot vector to the spline concept, allows usage of non-uniform piece-wise
features [1, 10]. They are covered in Section 2.3.

2.1 B-Spline
Regular B-spline is defined by a set of control poiRtsa knot vectolJ ={ u;} , and degreep, where
i=0n-1, j=01L.m andm=n+ p+1 [1, 4, 6, 9]. Control points are located in the multi-dimensional space
we refer to as the model space. The spline interpolates between control points with the help of the basis function:
I<n
COENMOLE (1)
i=0
where p is the degree of the basis function, u is a coordinate in the parametric spline sp@ge)aisd

point on curve in the model space. Accordingly, any point on the curve is obtained by summing multiplications
of control pointsR, and basis function#\; ,(u) . The basis function is calculated from the expression:

_J1 ifu Su<uyy

Ni'O(u)_{O otherwise (2)
u-—u: U: 1 —Uu

Nip (U) = ———Nj g () + —=——Ni 1 o5 (1), 3
i+p — Hi i+p+l ~ Hi+l

where u is the coordinate in the parametric spline space wgnare values from the knot vectar .

Thelast expression is referred to as Cox-de Boor recursion formula [1, 3]. It denotes that basis function domains
are divided by elements of the knot vector, i.e. knots [1, 9]. It is also known that the sum of all basis functions
N; p(u) equals one [7]. The sum oN; ,(u) in the interval k—p<i<k equals one as well, where

u, Su<uy,, (the partition of unity [2, 6]):

- 60 -



i<k
DN, U)=1. (4)

i=k—-p
As the basis function is non-negative, it means that all basis fundippéu) outside the interval
k—p<i<k are zero. Consequently, all multiplication ,(u)R outside the same interval are zero. Thus,
suchcontrol points has no effect on the portion of the curve withirc u <u,,; . So any point on the curve

C(u) of the uniform B-spline is affected bp+1 control points, with the exception @(0) and C() . These
spedal cases can be explained through analysis of the knot vector.

The knot vector is a set of non-decreasing values u,;, where j=0,L.m-1andm=n+p+1.1In

this paper we use a normalized knot vector form, so the parametric space of the B-spline and knot vector values
are bounded by 0 and 1. Also, it is a common practice to use the clamped knot vector, where phelfirst

values equal O and the lapt+1 values equal 1 [1, 3, 10]:
U={ug=u=..=Up=0<Up SU,» <..<Up4 SU; =..=Upp =Up,pq =1} (5)
Let us examine the example of a cubic B-spline<(3), defined by eight control points(=8) and
m=12 uniform knots:U= {0 0 0 0 02 04 Q6 08,1,1,1,1}. Basis functions are given in Figure 2. For
u= 03 functions N;3(03), N,3(03), N33(0.3) and N,; (0.3) are greater than zero, other functions are zero.
This means that a point on the cur@(0.3) is affected by the position of four control poin®:, P,, P;, and
P,. Also function N,3(03) and N33 (0.3) values are significantly greater than values Mf; (0.3) and
N3 (0.3). This suggests that the poiG(0.3) is closer toP, and P; thantoP, and P, .
In the case whenu is in the position of the knat = ug; = 04 we have only three non-zero functions:
N,3(03)#0, N33 (03)#0 and N,; (03)#0. ConsequentlyC(04) is affected by three control point®,,
P;, and P,. So, a point on the curv€(u) is affected byp —s+1 control points, wheres is knot multiplicity
at u. Therefore the curve becom&™® continuous at this point (here the symi@lrefers to spline continuity
andhas a different meaning thaZ(u) , see Section 2.3 for more details) [1, 9].
Because of the clamped knot vector the first curve p@iid) is affected only by one control poilfg, .
Thelast curve pointC(l) is affected by the control poir®,_; respectively:
C@)=P,, (6)
Cl)=P,,. )

2.2 Rational B-Spline

Regqular B-spline is quite powerful interpolation tool, but it lacks flexibility. B-spline can not represent
conicsections, like circles [4, 5, 9]. Therefore a rational form is used to cover these cases [4, 10]:

CW) =3 N, , (WP, ®)
DN p(Ww =0
i=0

where the weight;, >0 is attached to every control point.

Figure 1. A circle represented by four rational B-splines
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Let us take a look at the example of a circle represented as four rational B-splines in Figure 1. Each
quarter of the circle is constructed from separate rational quadratic B-spline defined by control point sequences:
{Py Py P}, { Py Py Py}, {Ps Ps5 Ps}, { Ps Py, B} . The weights of the first and the last control points in each

seqence are 1. The weight of the middle control poin{@/Z [4]. Greater weights pull the curve towards the
contml point and lesser weights push the curve away [1, 4, 10]. Naturally, regular B-spline is a special case of
rational B-spline when all weights are equal to 1.

2.3 Non-uniform Rational B-Spline

The term of uniformity is used to define a relation between the sequence of control points and the
parametric spline space. As mentioned in Section 2.1, control point influence over the curve is defined by basis
functions and function domains are divided by knots [9]. This means that property of uniformity is embedded
into the knot vector [1]. Until now we considered a knot vector to be clamped and uniform:

i-p
LUy =..=u =1}, 9
n-p n n+p+l } ( )
where p+1<i<n. Such a knot sequence divides whole parametric space into uniform intervals. Each
of intervals containsp+1 non-zero basis functions, thus the curve is affectecobyl control points in this

interval (see Section 2.1). In general case, knots can be distributed in non-uniform manner. However a knot
sequence must be non-decreasing, as shown in the expression (5).

Let us take the example of the knot vectbe= {0 0 0 0 02 04 06 08 1,1,1,1} and modify it by
setting ug=us=u,=02: U= {000 0020202 0811,1,1}. Knot multiplicity of s=p atu=02
leaves only one non-zero function at this point (see Figure 3), which sugge<t {82) is affected by single
contool point. Therefore, the curve goes through this control pd©.2) = P;. In other words, the knot of
multiplicity s reduces curve continuity at that knot by[3, 10]. In this example the curve becon@8S =C°

contiruous atu= 0.2. Further increment of multiplicity is pointless, because it excludes control points from
affecting the curve.

NURBS is powerful enough to compose any shape. Recall the example of the circle in Figure 1. It was
represented by four uniform rational B-splines. Knot multiplication in the knot vector allows the construction of
such a shape from single quadratic NURBS curve. The same control points with weights are used in the
sequence{P,P,P,P; P, P5 P P, B} . The last control point is the same as the first to close the curve.
Instead of multiple control points, multiple knots are employed= {0, 0,0 025 025 05 05 075 0.75,

1,1,1} [4]. Behavior of basis functions is depicted in Figure 4. Notice that every quarter of the circle is
represented by single non-zero knot interval and each quarter is independent.

U={y= L=Up =000 =

01 02 03 04 05 08 o7 o8 09 1

a 3 uﬁl uS uﬁ uT UB=' '=u11

o
u=..=u,

Figure 2. Basis functions of uniform cubic B-spline defined by eight control points
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Figure 3. Basis functions of cubic B-spline with knot multiplicity of three at 0.2
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09 Nn;tu)
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a0 2 5 u7= u

Figure 4. Basis functions of quadratic NURBS defined by the knot vector U={0, 0, 0, 1/4, 1/4, 2/4, 2/4, 3/4, 3/4, 1, 1, 1}

3 NURBS evaluation algorithms

To represent NURBS in the model space (Cartesian multi-dimensional space) as a curve, the spline
mustbe evaluated at multiple, where 0<u <1. According to the expression (8) basis functions are necessary
in order to do so. Several basis function calculation methods are covered in Section 3.1. Once basis functions are
known, they can be used to determine a point on the curve. The description of single point evaluation algorithms
can be found in Section 3.2. Finally, entire NURBS curve evaluation strategies are presented in Section 3.3.

3.1 Basis function

As we already discussed in Section 2.1, calculation of all basis functions is not necessary. There are
only p—-s+1 non-zero basis functions at amy, where p is the degree of the basis function ands knot

multiplicity at u. So we are to obtain all basis functions frdp_, ,(u) to Ny ,(u), whereu, <u<uy,; .

3.1.1 Cox-de Boor recursion

The most obvious solution is to use a standard Cox-de Boor recursion formula, given in the expression
(2) and (3). Although this formula is simple to understand and easy to implement, [6] and [9] sources state that it
involves many unnecessary calculations. Figure 5 illustratesMipy(u) is obtained.

Nk—f‘. 0 = Nk—f‘. 1 Nka_Q'Nk 33 k3P
Ny = N, a'Nk 2.2 Z: Nk 23 4: Nk—z
2 2 B p
Nyjo = D’Nkn 4: N2 4 N 4 Neip
Nk,o =1 A Nk,| 4 Nk, 4 Nk,s 4 Nk,p
N =0 N N N N ..

Figure 5. Computation of non-zero basis functions

Zero functions are marked in blue. They have no effect on higher degree functions in successive
iterations, because multiplication by zero is zero (blue arrows). In the example of

U= {0000 O02040608111,1}, where p=3 and k=4 (u is in the intervalu, <u<usg), the
recusive formula returns non-zero values bifi3(u), Nj,3(u), Nz3(u), and N43(u) . Accordingly to the
expression (3), to obtairN,;(u) the algorithm calculatedN;,(u) and N,,(u). To acquire second degree
functions, the recursion must obtain first degree functibhig(u), N,;(u) and N,,(u), N3, (u). Finally, first
degee functions is calculated from zero degree functioNg;(u) is acquired fronN,,(u) and N,4(u),
N,;(u) is acquired fromN,,(u) and N3o(u), Ng,(u) is acquired fromN;o(u) andN4q(u) . Notice that
N,;(u) is calculated twice, siN,,(u) as well asN;4(u) is actually calculated three times. Moreover, only
N,0(u) is non-zero among all zero degree functions.

This example illustrates how Cox-de Boor recursion formula is overloaded with unnecessary
calculations. Naturally, the evaluation of higher degree B-spline basis functions yields even more unnecessary
iterations. Also the expression (3) is numerically unstable, becaudotases [5]. Another drawback is noted
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in [2]. The recursion formula gives an incorrect result wheal. The last point on the curve is always
C@® ={0,0,0} . To overcome this problem, we simply use expressions (6) and (7) as special c&46%, aod
C@ can be found without the calculation of basis functions.

3.1.2 Inverted Triangular Scheme

To avoid unnecessary calculations, authors in [6] present the algorithm based ITS (inverted triangular
schame). It is given aBasis_ITSOfunction in pseudo code. It calculates functions from lower to higher degree
in contrast to the recursive algorithm. Also, they suggest rearrangement of the expression (3) to remove
operation duplications:

N (u) = —Ljﬂ N (u) + —1 N (u) (10
k=i, k—j,p-1 k-j+Lp-1\U)
Ip Rj+Lj P Rj +L; ke
whereL; =u—Ug,, ; andR; =u,,; —u. (12)

Basi s_I TSO(k, p, u)

1. N[O]=1
2. for (j=1;j<=p;jtt)
21 saved=0

2.2. L[]=u-knotslk +1-j]

2.3. R[j]=knots[k +j]-u

2.4. for (r=0;r<j;r++)
241 . tmp=N[r]/(R[r+1]+L[j-r])
2.4.2. N[r] = saved + R[r + 1] * tmp
2.4.3. saved = L[j - r] * tmp

2.5. N[] = saved

3. return N

Note thatk should already be known, whekedefines the knot interval in which resides. Therefore,
the methodFindKnotSpan (available in [6]) must be applied to determikebefore the implementation of
Basis_ITSO.

3.1.3 Maodified Inverted Triangular Scheme
We noticed another relation. Let the right part of the sunNjn,(u) be equalA, then the left part of
the sum inN;_; ,(u) is always1l- A. Based on this observation, we propose another modification of the
expression (3):
Nip W)= A o) N; oy )+ @A) Nigpa(U), (12
where A ;(u) = (U-Uu;) /(U , —U;) andk - p<i<k. (13
The example of non-zero cubic basis function calculation is given in Table 1, followed by modified ITS
algorithms. Asu value is fixed we omit the notation ¢fi) .

Table 1. Non-zero basis function calculations for cubic B-spline, using a modified ITS

i | p=0 p=1 p=2 p=3
k-3 Ny 33 = 1-A_ 2,3)Nk—2,2
k-2 N2z = (0= Ac 12Ny Ni-23= Ac2,3Nk22 + 1= A 13N 10
k-1 Ni11 = @=Ac)Nko Nio o= AcC1oNicnn + Q= A )Nk Nic1z= A gaNigp + B Acg) N
K Nio =1 Ni1=AcNko N 2= Ac2Nia Ny 3= ANy
Basis_I TS1(k, p, u) Basi s_I TSU(k, p, u)
1. N[O]=1 1. N[O]=1
2. for (i=1;i<=p;i+t) 2. M= (u - knots[K])/(knots[k+1]-knots[K])
21. for (j=i-1;j>=0;j-) 3. for (i=1;i<=p; i++)
211 . A=(u-knotsk-j])/ 3.1 for (j=i-1;j>=0;j-)
(knots[k + i - j] - knots[k - j]) 311 . tmp=N[]*(M+))i

21.2. tmp = N[j] * A 3.1.2. N[ + 1] += N[j] - tmp

2.1.3.  N[j+ 1] += N[j] - tmp 3.1.3.  N[=tmp

2.14. N[j] = tmp 4. return N

3. return N

These algorithms return basis functions in reversed order: fiop),(u) to Ny_, ,(u). Basis_ITSO
andBasis_ITS1lalgorithms are suitable for any NURBS. Only few CAD and CAM applications allow editing
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the knot vector, because such modification is not intuitive [10]. Hence, in many cases NURBS stays uniform.
From the expression (9) it is obvious that every non-zero interval in the knot vector gtjnalg) . Let us

presume thatM = A ; = (U—Uy) /(U —Uy) . It is easy to calculate thaty, , =M /p, A_;,=M+1)/p,
Aczp=(M+2)/p. So, in case of the uniform knot vector, the expression (13) can be simplified:

Nl+j
Acip=""0

Plugging the expression (13) into the last row of Table 1 indicates that calculation of a non-zero
function set uses knots from_; to u,,,. So the equation (14) is valid when all knot intervals frgm, ., to

(14

Ug.p are equal. In the case of the clamped knot vector, thedirahd last p knot intervals are zero. As the
first uniform interval begins ati, and the last uniform interval ends @t, the expression (14) can be used for
all intervals from u,,, ; to u,_,. This means that the ITS algorithm can be writterBasis_ITSU for all
U, <U<Up,,, Where:

2p-1<k<n-p. (15

3.2 Single point on curve

Ead of non-zero functions defines how strongly a certain control point affects a curve (see Section
2.1). According to the expression (8), the strength of the effect is also modified by weights of control points (see
Section 2.2). In order to calcula@®u) , we require a sum of alN; , (u)w; R divided by the sum ofN; , (U)w;,

where k- p<i<k and u, <u<ug,. Following algorithms calculate a point on the curve, when basis

functions are known. Thu&etPoint0 should be used aft@asis_ITSQ Because of the inverted function order
in Bags_ITS1and inBasis_ITSU, those algorithms should be followed GgtPointl.

Get Poi nt O(N, k) Get Poi nt 1(N, k)

1. Nsum=0 1. Nsum=0

2. Cu={0,0,0} 2. Cu={0,0,0}

3. for (i=0;i<=p;i++) 3. for (i=0;i<=p;i+t)
3.1. Nsum += N[i] *= P[k - p + i]. Weigth 3.1. Nsum += N[i] *= P[k - i]. Weigth
3.2. Cu+=N[i]*P[k-p +i].To3D() 3.2. Cu+=N[i] * P[k - i].To3D()

4. return Cu/Nsum 4. return Cu/Nsum

The methodTo3D() returns{ x y, Z coordinates and ignores the control point’'s weight. If a spline is

regular B-spline and all weights equal 1, we can use the expression (1) instead of the expression (8) to find a
certain point on the curve. In such c&stPointl algorithm can be simplified tGetPoint_NR1

Get Poi nt _NR1(N, k)
1. Cu={0,0,0}
2. for (i=0;i<=p;it+)
2.1. result+= NJ[i] * P[k - i].To3D()
3. return Cu

3.2.1 De Boor's algorithm

There are several B-spline evaluation techniques that do not need basis functions to determine a point
on the curve, like de Boor’s algorithm [9]. De Boor’s algorithm is based on observatio€¢hptis positioned

at the location of the control poir®_,, when u=u, and knot multiplicity atu equals p (see section 2.3).

How do we make desired knot multiplicity at any? The author in [9] suggests a multiple insertion of a knot at
u. The insertion of an additional knot also means the insertion of a new control point, thys aéeations the

last control point is exactly at the position 6{u) . In case wheru is already at the position of the knog

with multiplicity <, only p— < iterations of the insertion are required. The position of every new control point
can be found from expressions [3, 9]:

Q"=@1-a)RY +aPR", (16)

u-—u; .
whereg; =—— forall k— p+1<i<k. @a7)
i+p — Hi
However, the actual insertion of knots is not performed, because this would lead to the modification of
the control point sequence during the evaluation. Thus the sequence of new control points is processed in a
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temporary array. The expression (16) requires control points to be converted to a homogenous 4D coordinate
system by multiplying coordinates by weighR" ={w; - x;, w, - y;, W, -z, w,} . This task is performed by
ConvertTo4D() method. The conversion back to Cartesian 3D coordinate system is performed by dividing
coordinates by weighP, ={x; / w;, y, / w;, z,/ w;, w;} in ConvertTo3D() method.

Get Poi nt _DeBoor (k, u)

1. s=0
2. while (k>=s && knots[k - s] == u)
2.1, s++

3. Q= new ControlPoint [p-s+1]
4. for (i=k-p;i<=k-s;i++)
4.1. QJi-k + p] = P[i].ConverTo4D()
5. for (r=1;r<=p-s;r++)
51. for (i=k-s;i>=k-p+r;i-)
5.1. 1. a=(u-knots[i])/ (knots[i + p - r + 1] - knots[i])
5.1.2. j=i-k+p
513.  Ql=(1-a)*Q[i-1]+a*Ql
6. return Q[p-s].ConvertTo3D().To3D()

3.3 Multiple Points on Curve

Gererally, evaluation of multiple points can be done using single point evaluation several times. But
several optimizations can be made. To evaluate entire NURBS curve, we must obtain multipleCfuints

where u= OAuU,2Au ...1- Au,1 and Au=1/(steps—1) is the step in the parametric spline space. Under these
conditions the initial knot interval is, <u<u,,,, thus initial k = p . Successivek values can be traced easily,

so the procedurd-indKnotSpan in not needed. Alsaa=0 andu=1 are handled as special cases (see Section
3.1) and calculated from expressions (6) and (7). The following algorithm evaluates the number of points equal
to steps on any NURBS curve.

NURBS_| TSO( st eps)

ste p=1/(steps-1)

Cu= new Point [steps]

Cu[0 ] = P[0].To3D()

iter=1

u = knots[p] + step

for (k=p;k<n; k++)

6.1. while (knots[k] == knots[k + 1] && knots[k] < 1)
6.1. 1. k++

6.2. while (u<knots[k + 1])
6.21 . N= Basis_ITSO(k, p, u)
6.2.2. Cul[iter] = Get Poi nt O(N, k)
6.2.3. iter++
6.2.4. u += step

7. CJsteps - 1] = P[n - 1].To3D()

8. return Cu

ok wNE

Algorithms in steps 6.2.1 and 6.2.2 can be replaced by modBizsis ITS1 and GetPointl
resgectively. If a spline is known to be non-rational tf@etPoint NR1can be used in steép2.2. If a spline is
uniform it is possible to optimize this algorithm even further.

3.3.1 Evaluation of Uniform B-spline Curve

Reall Section 3.1.3 and expressions (15), which states Bhats ITSU can be used instead of
Basis_ITS1within bounds of2p-1<k <n- p. Figure 6 illustrates the basis functions of the cubic uniform B-

spline defined by m=17 knots. Notice that Ng3(0)=N;,30), N;3(005=Ny;; (099,
N,3 (0.)= N;g3(09) and so on. Clearly, certain basis functions of the uniform B-spline are symmetrical to
eachother. Actually, any functionN; ,(u) can be reflected tdN,;_; ,(1-u) at the middle point of the
parametric space. We refer to this operation asef:
ref : Ni'p(u) - Nn—i—l,p(l_ u), (18)
wherek — p<i<k. (19
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The set of non-zero function®,_, ,(u) ... Ny ,(u) at 0<u, <u<ug, <05 can be cloned to
Npk1p@=U) ... Npyipap@—Uu). In other words, there is no need to calculate non-zero functions for the
secand half of the parametric space, because they can be obtained from the first one.

os kN, (u) N, (u)
as
N, (1) N () N

m\ o) N (u) Ny by Ny N oU) Ny, o(u)
08
: /\/\/\/\/\/\/\/\/\
03+
024
01
n .
. 03
= I.I U

D
U =..= =
us Ys Yz ug Uy Yig Yy UipUis™ Yis

Figure 6. Basis functions of cubic uniform B-spline defined by 13 control points (17 knots)

Figure 6 also depicts another important property of uniform B-spline. Pay attention to functions marked
as ed, they are identicalN33; (0.2 Ny3 (0.3)= Ng3 (04)=...= Ng3(0.8) . The set of non-zero functions at
u=0.22 consists of four functionsN,3 (022), N33(0.22), N,3(0.22), and N53(0.22). There is a set of
functions with the same values at each intervgl, where 5<k<10: N,3(022) = N33(032 = .. =
N,3(072), N33(022) = N,3(032) = ... = Ng3(072), N453(022) = N53(032) = ... = Ng3(072), and
Ns3(022) = Ng5(032) = ... = Nyp3 (0.72) . Obviously, non-zero functions at arbitramy, ; <u <u,, can be

repated atu + j/(n— p), wherel< j < (n—p)- (2p-1) . In this paper we refer to this operation asdp:

rep:N; o (U) > Niyj o (u+j/(n-p)), (20
where 1< j<n-3p+1 forall p—-1<i<2p. (21)
However, u values must be distributed in specific manner, in order to hit a requirad or
u+ j/(n— p). This means that the chosen st&p must divide each non-zero knot interval into the same
number of equal subintervals. If we consider that N is a natural number, then st&p must satisfy:
1

3.3.2 Multiple Point on Curve Evaluation Strategies

We suggest several NURBS evaluations strategies regarding given observations in Table 2. The strategy
namecorresponds to the case of the spline and to the basis function algorithm. The interval row indicates the
bounds of the parametric space for basis clone operations that are given in the last table row (see expressions
(18), (19), (20), and (21)).

Table 2. NURBS curve evaluation strategies

Strategy Case Interval Basis method| Get point method | Basis clone operation
NURBS_ITSO | General O<u<il Basis_ITSO | GetPoint0
NURBS_ITS1 | General O<u<il Basis_ITS1 |GetPointl
0<u< 05 Basis_ITS1 | GetPointl Npigp @—u) =ref (N; ,(u))
URBS_ITS1 Uniform
u=05 Basis_ITS1 |GetPointl
Uniform O<u<uz,; |[Bass_ITS1 | GetPointl Ny p @—u) =ref (N; ,(u))
URBS_ITS1+U| o 20 4 .
Z9p Upp1 SU<Upp |Basis_ITSU | GetPointl Ni,j pU+ j/(n—p))=rep(N; ,(u))
Uniform 1 0<u<uUy,y |Bass ITS1 | GetPoint NR1 | Npjqp@—u) =ref (N; ,(u))

UBS_ITS1+U |Non-rational
n>3p-—1|Uzp1<SU<Uyp |Basis_ITSU | GetPoint NRL | Niyj p(U+ j/(n—p))=rep(N; ,(u))

Note that in order to apply uniform case optimizations, the stepAsizenust be set accordingly to the
expression (22) before evaluation. An uniform non-rational spline is evaluated using the simplified method
GetPoint_NR1linstead ofGetPointl (expression (1) instead of (8)).
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4 Results

Algorithms given in Section 3 were implemented using C# programming language and .NET
framework. The performance tests were acquired on Intel Core2 Duo 1.86 GHz x2 CPU, 3.GB RAM machine.
The evaluation of single point or function takes only few nanoseconds. This makes the comparison of evaluation
time-effectiveness hardly possible. Therefore all evaluation algorithms were applichd® at differentu .

This procedure was performed several times and average calculation times were recorded.
Recursive Cox-de BoorBasis ITSQ Basis ITS] and Basis_ITSU basis function evaluation

algorithms were tested on the uniform 27 control point B-spline. The same algorithms and de Boor’s knot
insertion method were employed to determine a single point on the curve. Calculation times are given in Figure 7

and Figure 8 respectively.

600 |
/ _::escoursive n = 27
500 s p | Recursive | TSO | TS1 | TSU
/ msu 1 37 20 15 15
400 2 135 34 26 19
E 3 385 55 16 30
3% 4 940 79 78 42
= 5 2105 100 103 58
200
/ 6 4806 129 142 77
Y /% 7 10470 156 176 92
100 | 8 24751 195 224 111
— |
0
1 2 3 Degree 7 8
Figure 7. NURBS basis function calculation times in milliseconds
4000
Recursive
3500 4+ — — — - DeBoor / n = 27
mso / L p | Recursive | DeBoor | ITSO | ITS1 | I TSU
3000 1 ms1 / 7 1 206 251 206 187 179
2500 4 sy _ i 2 340 404 247 233 225
£ ‘ 3 593 667 | 268 | 277 | 266
g 2000 / - 4 1128 1022 320 311 279
e 1500 P 5 2311 1458 370 366 310
VA 6 4927 1968 | 429 [ 431 | 360
1000 —= 7 10976 2566 481 496 402
500 | o 8 25855 3253 543 574 460
0
1 2 3 4 Degree 5 6 7 8

Figure 8. NURBS single point on curve evaluation times in milliseconds

Calculation time of the recursive Cox-de Boor algorithm grows rapidly for every successive degree of
B-spine. However, the ITS is noticeably less affected by the degree increment. De Boor’s knot insertion should
be fast, because lias no basis function calculation phase. According to FiguBe8oint_DeBoorovertakes
recursive algorithm only whem > 4, but is left far behind by the ITS. This happens because of a large number

of scalar multiplications and conversions from 3D to 4D and back.

The ITS takes less time in the basis function determination phase than in the position acquisition phase
even when p=_8. Therefore performances of single point evaluation uddagis ITSQ Basis_ITS1 or
Basis_ITSUare very similar. Due to poor performance of recursive Cox-de Boor and de Boor’s knot insertion
algoiithms they were not included in multiple point evaluation. The evaluation of multiple points over entire 27
control point NURBS curve was carried out using strategies given in Section 3.3.2. Results are given in Figure 9.

The same strategies were appliedhte 18 control point andn=9 control point curves. Performance
pattens remain the same as in Figure 9, BRBS ITS1+UandUBS_ITS1+Uprovided less time economy. In
thesecases, less control points mean fewer intervals where the operatiocan be applied (see expressions

(20) and (21)).
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600
NURBS_ITSO n = 27
500 1 NURBS_[TS1 / p | NURBS_ [ NURBS_ | URBS_ URBS_ UBS_
o jggz—gu ] I TSO | TS1 I TS1 I TS1+U | I TS1+U
[ i I - 1 170 162 157 156 142
e sty 2 211 213 197 189 170
£ 300 - =
£ _—-_"1" 3 234 256 240 225 203
200 =" 4 279 295 271 252 231
== 5 326 348 295 265 237
10 6 382 409 342 310 278
7 433 479 389 361 322
0 8 491 557 444 424 381
1 2 3 Degree 5 6 7 8

Figure 9. NURBS multiple points on curve evaluation times in milliseconds

The implementation ofef and rep operations in evaluation of uniform rational B-spline saved from
3.7% to 24.6% of calculation time (compdJ&BS_ITS1+Uand NURBS_ITS1). The algorithm designed for
uniform non-rational B-spline saved from 12.4% to 32.8% of calculation time. AIRBS ITS1+U and
UBS_ITS1+Uwererespectively up to 18.7% and 27.3% more time-efficient in comparissdRBS_ITSO.

The evaluation of higher degree basis functions takes longer. In these&fasesl rep operations can
save more time (compakéRBS_ITS1+Uand NURBS_ITS1in Figure 9). There is one more fact to be taken
into consideration. The percentage of saved calculation time depends on the number of NURBS control points.
Accordingly to the expression (21), there are 3p+1 knot intervals wheraep operation can be applied. If

n< 3p -1, this optimization can not be implemented even if B-spline is uniform.

5 Conclusions

In this paper we analyzed three already known NURBS evaluation algorithms. Test results showed that
the recursive Cox-de Boor formula is highly ineffective especially in the evaluation of higher degree splines.
Although de Boor’s knot insertion method performed better while evaluating splines of the fourth and higher
degree, it was significantly overtaken by inverted triangular scheme in all cases.

Due to this discovery we composed several modifications of the inverted triangular scheme and few
evaluation strategies designed for special cases of NURBS. Accordingly to the test results, the presented
strategies saved up to 24.6% of evaluation time in the case of uniform B-spline, and up to 32.8% in the case of
uniform non-rational B-spline. A significant gain of performance was observed during NURBS evaluation of the
degreep >4 with the number of control points greater or equaBpo- 1.

The stated facts lead to a conclusion that time-efficiency of NURBS curve evaluation based on the
inverted triangular scheme can be improved. This is achieved by recognizing uniform and non-rational cases and
implementing evaluation strategies presented in this paper. Optimizations are especially effective in the
evaluation of higher degree splines with a larger number of control points.
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