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Abstract: This paper analyses time-efficiency of existing NURBS evaluation algorithms. The most 
competitive computation methods are modified to achieve even better performance. Performance tests 
indicate that NURBS curve evaluation time-efficiency can be improved in uniform and non-rational B-
spline cases. Suggested optimizations are very effective in the evaluation of higher degree splines with a 
larger number of control points. 
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1 Introduction 
NURBS stands for Non-Uniform Rational B-Spline. It is the most popular spline representation in 

today’s commercial CAD packages [1, 4, 5, 8, 10]. NURBS is able to represent large variety of shapes, like 
circles, hyperbolas, parabolas, and still preserves mathematical exactness [5]. 

Generally, a spline is a smooth curve interpolated among given control points. Unfortunately, a spline 
cannot be constructed in the model space directly. Each point on NURBS curve or surface must be calculated 
from the set of control points, knot vector, and basis function of specific degree. This process is called NURBS 
evaluation [1, 5, 8].  

In the following sections we will discuss theoretical aspects of NURBS as well as existing evaluation 
algorithms. Moreover, we will introduce certain modified evaluation algorithms and strategies for uniform and 
non-rational cases that improve evaluation performance. Finally we will compare actual time-efficiency of 
suggested method implementations. 

2 NURBS in Theory 
Acronym NURBS defines special properties of this particular spline: (1) Non-Uniform, (2) Rational, (3) 

B-Spline. Let us clarify those properties by starting from the last one. It has the basis function of B-spline, which 
ensures smooth blending [2] of control point influence over the curve. All theory regarding a regular B-spline is 
covered in Section 2.1. Rational property gives more flexibility to a spline [4, 5, 10], but also increases 
complexity. It is achieved by adding weights to control points. Rational B-spline is presented in Section 2.2. 
Finally, introducing the editable knot vector to the spline concept, allows usage of non-uniform piece-wise 
features [1, 10]. They are covered in Section 2.3. 

2.1 B-Spline 

Regular B-spline is defined by a set of control points iP , a knot vector }{ juU = , and degree p , where 

1..0 −= ni , mj ..1,0=  and 1++= pnm  [1, 4, 6, 9]. Control points are located in the multi-dimensional space 

we refer to as the model space. The spline interpolates between control points with the help of the basis function: 
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where p  is the degree of the basis function, u is a coordinate in the parametric spline space and )(uC  is 

point on curve in the model space. Accordingly, any point on the curve is obtained by summing multiplications 
of control points iP  and basis functions )(, uN pi . The basis function is calculated from the expression:  
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where u  is the coordinate in the parametric spline space and ju  are values from the knot vector U . 

The last expression is referred to as Cox-de Boor recursion formula [1, 3]. It denotes that basis function domains 
are divided by elements of the knot vector, i.e. knots [1, 9]. It is also known that the sum of all basis functions 

)(, uN pi  equals one [7]. The sum of )(, uN pi  in the interval kipk ≤≤−  equals one as well, where 

1kk uuu +<≤  (the partition of unity [2, 6]): 
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As the basis function is non-negative, it means that all basis functions )(, uN pi  outside the interval 

kipk ≤≤−  are zero. Consequently, all multiplications ipi PuN )(,  outside the same interval are zero. Thus, 

such control points has no effect on the portion of the curve within 1kk uuu +<≤ . So any point on the curve 

)(uC  of the uniform B-spline is affected by 1+p  control points, with the exception of )0(C  and )1(C . These 

special cases can be explained through analysis of the knot vector. 

The knot vector is a set of non-decreasing values 1+≤ jj uu , where 1..1,0 −= mj  and 1++= pnm . In 

this paper we use a normalized knot vector form, so the parametric space of the B-spline and knot vector values 
are bounded by 0 and 1. Also, it is a common practice to use the clamped knot vector, where the first 1+p  

values equal 0 and the last 1+p  values equal 1 [1, 3, 10]: 

 }1.....0...{ 112110 ====≤≤≤≤≤===== +++−++ pnpnnnppp uuuuuuuuuU .          (5) 

Let us examine the example of a cubic B-spline (3=p ), defined by eight control points ( 8=n ) and 

12=m  uniform knots: }1111806040200000{ , , , , ., ., ., ., , , , U = . Basis functions are given in Figure 2. For 

3.0=u  functions )3.0(3,1N , )3.0(3,2N , )3.0(3,3N  and )3.0(3,4N  are greater than zero, other functions are zero. 

This means that a point on the curve )3.0(C  is affected by the position of four control points: 1P , 2P , 3P , and 

4P . Also function )3.0(3,2N  and )3.0(3,3N  values are significantly greater than values of )3.0(3,1N  and 

)3.0(3,4N . This suggests that the point )3.0(C  is closer to 2P  and 3P  than to 1P  and 4P .  

In the case when  u  is in the position of the knot 4.05 == uu  we have only three non-zero functions: 

0)3.0(3,2 ≠N , 0)3.0(3,3 ≠N  and 0)3.0(3,4 ≠N . Consequently )4.0(C  is affected by three control points: 2P , 

3P , and 4P . So, a point on the curve )(uC  is affected by 1+− sp  control points, where s  is knot multiplicity 

at u . Therefore the curve becomes spC −  continuous at this point (here the symbol C  refers to spline continuity 
and has a different meaning than )(uC , see Section 2.3 for more details) [1, 9]. 

Because of the clamped knot vector the first curve point )0(C  is affected only by one control point 0P . 

The last curve point )1(C  is affected by the control point 1−nP  respectively: 

 0)0( PC = , (6) 

 1)1( −= nPC . (7) 

2.2 Rational B-Spline 
Regular B-spline is quite powerful interpolation tool, but it lacks flexibility. B-spline can not represent 

conic sections, like circles [4, 5, 9]. Therefore a rational form is used to cover these cases [4, 10]: 
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where the weight 0>iw  is attached to every control point.  

 

Figure 1. A circle represented by four rational B-splines 
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Let us take a look at the example of a circle represented as four rational B-splines in Figure 1. Each 
quarter of the circle is constructed from separate rational quadratic B-spline defined by control point sequences: 

},,{ 210 PPP , },,{ 432 PPP , },,{ 654 PPP , },,{ 076 PPP . The weights of the first and the last control points in each 

sequence are 1. The weight of the middle control point is 2/2  [4]. Greater weights pull the curve towards the 
control point and lesser weights push the curve away [1, 4, 10]. Naturally, regular B-spline is a special case of 
rational B-spline when all weights are equal to 1. 

2.3 Non-uniform Rational B-Spline 
The term of uniformity is used to define a relation between the sequence of control points and the 

parametric spline space. As mentioned in Section 2.1, control point influence over the curve is defined by basis 
functions and function domains are divided by knots [9]. This means that property of uniformity is embedded 
into the knot vector [1]. Until now we considered a knot vector to be clamped and uniform: 

 }1.........0...{ 10 ===
−
−

===== ++ pnnip uu
pn

pi
uuuU , (9) 

where nip <≤+1 . Such a knot sequence divides whole parametric space into uniform intervals. Each 

of intervals contains 1+p  non-zero basis functions, thus the curve is affected by 1+p  control points in this 

interval (see Section 2.1). In general case, knots can be distributed in non-uniform manner. However a knot 
sequence must be non-decreasing, as shown in the expression (5). 

Let us take the example of the knot vector }1111806040200000{ , , , , ., ., ., ., , , , U =  and modify it by 

setting  2.0456 === uuu : }1111802020200000{ , , , , ., ., ., ., , , , U = . Knot multiplicity of ps =  at 2.0=u  

leaves only one non-zero function at this point (see Figure 3), which suggest that )2.0(C  is affected by single 

control point. Therefore, the curve goes through this control point: 3)2.0( PC = . In other words, the knot of 

multiplic ity s  reduces curve continuity at that knot by s  [3, 10]. In this example the curve becomes 0CC sp =−  
continuous at 2.0=u . Further increment of multiplicity is pointless, because it excludes control points from 
affecting the curve. 

NURBS is powerful enough to compose any shape. Recall the example of the circle in Figure 1. It was 
represented by four uniform rational B-splines. Knot multiplication in the knot vector allows the construction of 
such a shape from single quadratic NURBS curve. The same control points with weights are used in the 
sequence },,,,,,,,{ 076543210 PPPPPPPPP . The last control point is the same as the first to close the curve. 

Instead of multiple control points, multiple knots are employed: , , , , , , , , , U 75.075.05.05.025.025.0000{=  

}111 , ,  [4]. Behavior of basis functions is depicted in Figure 4. Notice that every quarter of the circle is 

represented by single non-zero knot interval and each quarter is independent.  

 

Figure 2. Basis functions of uniform cubic B-spline defined by eight control points 

 

Figure 3. Basis functions of cubic B-spline with knot multiplicity of three at 0.2 
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Figure 4. Basis functions of quadratic NURBS defined by the knot vector U={0, 0, 0, 1/4, 1/4, 2/4, 2/4, 3/4, 3/4, 1, 1, 1} 

3 NURBS evaluation algorithms 
To represent NURBS in the model space (Cartesian multi-dimensional space) as a curve, the spline 

must be evaluated at multiple u , where 10 ≤≤ u . According to the expression (8) basis functions are necessary 
in order to do so. Several basis function calculation methods are covered in Section 3.1. Once basis functions are 
known, they can be used to determine a point on the curve. The description of single point evaluation algorithms 
can be found in Section 3.2. Finally, entire NURBS curve evaluation strategies are presented in Section 3.3. 

3.1 Basis function 
As we already discussed in Section 2.1, calculation of all basis functions is not necessary. There are 

only 1+− sp  non-zero basis functions at any u , where p  is the degree of the basis function and s  is knot 

multiplicity at u . So we are to obtain all basis functions from )(, uN ppk−  to )(, uN pk , where 1kk uuu +<≤ .  

3.1.1 Cox-de Boor recursion 
The most obvious solution is to use a standard Cox-de Boor recursion formula, given in the expression 

(2) and (3). Although this formula is simple to understand and easy to implement, [6] and [9] sources state that it 
involves many unnecessary calculations. Figure 5 illustrates how )(, uN pk  is obtained. 

 
Figure 5. Computation of non-zero basis functions 

Zero functions are marked in blue. They have no effect on higher degree functions in successive 
iterations, because multiplication by zero is zero (blue arrows). In the example of 

}1111806040200000{ , , , , ., ., ., ., , , , U = , where 3=p  and 4=k  ( u  is in the interval 5uuu4 <≤ ), the 

recursive formula returns non-zero values of )(3,1 uN ,  )(3,2 uN , )(3,3 uN , and )(3,4 uN . Accordingly to the 

expression (3), to obtain )(3,1 uN  the algorithm calculates )(2,1 uN  and )(2,2 uN . To acquire second degree 

functions, the recursion must obtain first degree functions )(1,1 uN , )(1,2 uN  and )(1,2 uN , )(1,3 uN . Finally, first 

degree functions is calculated from zero degree functions: )(1,1 uN  is acquired from )(0,1 uN  and )(0,2 uN , 

)(1,2 uN  is acquired from )(0,2 uN  and )(0,3 uN , )(1,3 uN  is acquired from )(0,3 uN  and )(0,4 uN . Notice that 

)(1,2 uN  is calculated twice, so )(0,2 uN  as well as )(0,3 uN  is actually calculated three times. Moreover, only 

)(0,4 uN  is non-zero among all zero degree functions. 

This example illustrates how Cox-de Boor recursion formula is overloaded with unnecessary 
calculations. Naturally, the evaluation of higher degree B-spline basis functions yields even more unnecessary 
iterations. Also the expression (3) is numerically unstable, because of 0/0  cases [5]. Another drawback is noted 
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in [2]. The recursion formula gives an incorrect result when 1=u . The last point on the curve is always 
}0,0,0{)1(   C = . To overcome this problem, we simply use expressions (6) and (7) as special cases, so )0(C  and 

)1(C  can be found without the calculation of basis functions. 

3.1.2 Inverted Triangular Scheme 
To avoid unnecessary calculations, authors in [6] present the algorithm based ITS (inverted triangular 

scheme). It is given as Basis_ITS0 function in pseudo code. It calculates functions from lower to higher degree 
in contrast to the recursive algorithm. Also, they suggest rearrangement of the expression (3) to remove 
operation duplications: 
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 where jkj uuL −+−= 1  and uuR jkj −= + .  (11) 
 
Basis_ITS0(k, p, u) 
1.  N[0] = 1 
2.  for  (j = 1; j <= p; j++) 

2.1.  sa ved = 0 
2.2.  L[j] = u - knots[k + 1 - j] 
2.3.  R[j] = knots[k + j] - u 
2.4.  for  (r = 0; r < j; r++) 

2.4.1 .  tmp = N[r] / (R[r + 1] + L[j - r]) 
2.4.2.  N[r] = saved + R[r + 1] * tmp 
2.4.3.  saved = L[j - r] * tmp 

2.5.  N[j] = saved 
3.  return  N 
 

Note that k  should already be known, where k  defines the knot interval in which u  resides. Therefore, 
the method FindKnotSpan (available in [6]) must be applied to determine k  before the implementation of 
Basis_ITS0. 

3.1.3 Modified Inverted Triangular Scheme 

We noticed another relation. Let the right part of the sum in )(, uN pi  be equal A , then the left part of 

the sum in )(,1 uN pi−  is always A−1 . Based on this observation, we propose another modification of the 

expression (3): 

 )()1()()()( 1,1,11,,, uNAuNuAuN pipipipipi −++− ⋅−+⋅= ,  (12) 

 where )/()()(, ipiipi uuuuuA −−= +  and kipk ≤≤− .  (13) 

The example of non-zero cubic basis function calculation is given in Table 1, followed by modified ITS 
algorithms. As u  value is fixed we omit the notation of )(u . 

Table 1. Non-zero basis function calculations for cubic B-spline, using a modified ITS  

i  0=p  1=p  2=p  3=p  

3−k     
2,23,23,3 )1( −−− −= kkk NAN  

2−k    1,12,12,2 )1( −−− −= kkk NAN  2,13,12,23,23,2 )1( −−−−− −+= kkkkk NANAN  

1−k   0,1,1,1 )1( kkk NAN −=−  1,2,1,12,12,1 )1( kkkkk NANAN −+= −−−  2,3,2,13,13,1 )1( kkkkk NANAN −+= −−−  

k  10, =kN  0,1,1, kkk NAN =  1,2,2, kkk NAN =  
2,3,3, kkk NAN =  

 
Basis_ITS1(k, p, u) 
1.  N[0] = 1 
2.  for  (i = 1; i <= p; i++) 

2.1.  fo r  (j = i – 1; j >= 0; j--) 
2.1.1 .  A = (u - knots[k - j]) /   

(knots[k + i - j] - knots[k - j]) 
2.1.2.  tmp = N[j] * A 
2.1.3.  N[j + 1] += N[j] - tmp 
2.1.4.  N[j] = tmp 

3.  return  N 

 

Basis_ITSU(k, p, u) 
1.  N[0] = 1 
2.  M = (u - knots[k])/(knots[k+1]-knots[k]) 
3.  for  (i = 1; i <= p;  i++) 

3.1.  fo r  (j = i – 1; j >= 0; j--) 
3.1.1 .  tmp = N[j] * (M + j)/i 
3.1.2.  N[j + 1] += N[j] - tmp 
3.1.3.  N[j] = tmp 

4.  return  N 

 

These algorithms return basis functions in reversed order: from )(, uN pk  to )(, uN ppk− . Basis_ITS0 

and Basis_ITS1 algorithms are suitable for any NURBS. Only few CAD and CAM applications allow editing 
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the knot vector, because such modification is not intuitive [10]. Hence, in many cases NURBS stays uniform. 
From the expression (9) it is obvious that every non-zero interval in the knot vector equals )/(1 pn − . Let us 

presume that )/()( 11, kkkk uuuuAM −−== + . It is easy to calculate that pMA pk /, = , pMA pk /)1(,1 +=− , 

pMA pk /)2(,2 +=− . So, in case of the uniform knot vector, the expression (13) can be simplified: 

 
p

jM
A pjk

+
=− , .  (14) 

Plugging the expression (13) into the last row of Table 1 indicates that calculation of a non-zero 
function set uses knots from 1+− pku  to pku + . So the equation (14) is valid when all knot intervals from 1+− pku  to 

pku +  are equal. In the case of the clamped knot vector, the first p  and last p  knot intervals are zero. As the 

first uniform interval begins at pu  and the last uniform interval ends at nu , the expression (14) can be used for 

all intervals from 1−+ ppu  to pnu − . This means that the ITS algorithm can be written as Basis_ITSU for all 

1+<≤ kk uuu , where: 

 pnkp −≤≤−12 .  (15) 

3.2 Single point on curve 
Each of non-zero functions defines how strongly a certain control point affects a curve (see Section 

2.1). According to the expression (8), the strength of the effect is also modified by weights of control points (see 
Section 2.2). In order to calculate )(uC , we require a sum of all iipi PwuN )(,  divided by the sum of ipi wuN )(, , 

where kipk ≤≤−  and 1+<≤ kk uuu . Following algorithms calculate a point on the curve, when basis 

functions are known. Thus GetPoint0 should be used after Basis_ITS0. Because of the inverted function order 
in Basis_ITS1 and in Basis_ITSU, those algorithms should be followed by GetPoint1. 

 
GetPoint0(N, k) 
1.  Nsum = 0 
2.  Cu = {0, 0, 0} 
3.  for  (i = 0; i <= p; i++) 

3.1.  Nsum += N[i] *= P[k - p + i].Weigth 
3.2.  Cu += N[i] * P[k - p + i].To3D() 

4.  return  Cu/Nsum 

 

GetPoint1(N, k) 
1.  Nsum = 0 
2.  Cu = {0, 0, 0} 
3.  for  (i = 0; i <= p; i++) 

3.1.  Nsum += N[i] *= P[k - i].Weigth 
3.2.  Cu += N[i] * P[k - i].To3D() 

4.  return  Cu/Nsum 

 

The method To3D() returns },,{ zyx  coordinates and ignores the control point’s weight. If a spline is 

regular B-spline and all weights equal 1, we can use the expression (1) instead of the expression (8) to find a 
certain point on the curve. In such case GetPoint1 algorithm can be simplified to GetPoint_NR1: 

 
GetPoint_NR1(N, k) 
1.  Cu = {0, 0, 0} 
2.  for  (i = 0; i <= p; i++) 

2.1.  re sult += N[i] * P[k - i].To3D() 
3.  return  Cu  

3.2.1 De Boor’s algorithm 
There are several B-spline evaluation techniques that do not need basis functions to determine a point 

on the curve, like de Boor’s algorithm [9]. De Boor’s algorithm is based on observation that )(uC  is positioned 

at the location of the control point pkP − , when kuu =  and knot multiplicity at u  equals p  (see section 2.3). 

How do we make desired knot multiplicity at any u ? The author in [9] suggests a multiple insertion of a knot at 
u . The insertion of an additional knot also means the insertion of a new control point, thus after p  iterations the 

last control point is exactly at the position of )(uC . In case when u  is already at the position of the knot ku  

with multiplicity s , only sp −  iterations of the insertion are required. The position of every new control point 

can be found from expressions [3, 9]: 

 w
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w
i PaPaQ +−= −1)1( ,   (16) 
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i uu

uu
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−

−
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+

 for all kipk ≤≤+− 1 .   (17) 

However, the actual insertion of knots is not performed, because this would lead to the modification of 
the control point sequence during the evaluation. Thus the sequence of new control points is processed in a 
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temporary array. The expression (16) requires control points to be converted to a homogenous 4D coordinate 

system by multiplying coordinates by weight: },,,{ iiiiiii
w

i wzwywxwP ⋅⋅⋅= . This task is performed by 

ConvertTo4D() method. The conversion back to Cartesian 3D coordinate system is performed by dividing 
coordinates by weight },/,/,/{ iiiiiiii wwzwywxP =  in ConvertTo3D() method. 

 
GetPoint_DeBoor(k, u) 
1.  s =  0 
2.  while  (k >= s && knots[k - s] == u)  

2.1.  s++ 
3.  Q = new ControlPoint [p - s + 1] 
4.  for  ( i = k - p; i <= k - s; i++) 

4.1.  Q[ i - k + p] = P[i].ConverTo4D() 
5.  for  (r = 1; r <= p - s; r++) 

5.1.  fo r  (i = k - s; i >= k - p + r; i--) 
5.1. 1.  a = (u - knots[i]) / (knots[i + p - r + 1] - knots[i]) 
5.1.2.  j = i - k + p 
5.1.3.  Q[j] = (1 - a) * Q[j - 1] + a * Q[j] 

6. return  Q[p-s].ConvertTo3D().To3D()  

3.3 Multiple Points on Curve 
Generally, evaluation of multiple points can be done using single point evaluation several times. But 

several optimizations can be made. To evaluate entire NURBS curve, we must obtain multiple points )(uC , 

where 1,1...2,,0  u  u u u ∆−∆∆=  and )1/(1 −=∆ stepsu  is the step in the parametric spline space. Under these 

conditions the initial knot interval is 1+<≤ pp uuu , thus initial pk = . Successive k  values can be traced easily, 

so the procedure FindKnotSpan in not needed. Also 0=u  and 1=u  are handled as special cases (see Section 
3.1) and calculated from expressions (6) and (7). The following algorithm evaluates the number of points equal 
to steps  on any NURBS curve. 

 
NURBS_ITS0(steps) 
1.  ste p = 1 / (steps - 1) 
2.  Cu = new Point [steps] 
3.  Cu[0 ] = P[0].To3D() 
4.  iter = 1 
5.  u = knots[p] + step 
6.  for  (k = p; k < n; k++) 

6.1.  while  (knots[k] == knots[k + 1] && knots[k] < 1) 
6.1. 1.  k++ 

6.2.  while  (u < knots[k + 1]) 
6.2.1 .  N = Basis_ITS0(k, p, u) 
6.2.2.  Cu[iter] = GetPoint0(N, k) 
6.2.3.  iter++ 
6.2.4.  u += step 

7.  C[steps - 1] = P[n - 1].To3D() 
8.  return  Cu 

 

Algorithms in steps 6.2.1 and 6.2.2 can be replaced by modified Basis_ITS1 and GetPoint1 
respectively. If a spline is known to be non-rational then GetPoint_NR1 can be used in step 6.2.2. If a spline is 
uniform it is possible to optimize this algorithm even further. 

3.3.1 Evaluation of Uniform B-spline Curve 
Recall Section 3.1.3 and expressions (15), which states that Basis_ITSU can be used instead of 

Basis_ITS1 within bounds of pnkp −≤≤−12 . Figure 6 illustrates the basis functions of the cubic uniform B-

spline defined by  17=m  knots. Notice that )1()0( 3,123,0 NN = , )95.0()05.0( 3,113,1 NN = , 

)9.0()1.0( 3,103,2 NN =  and so on. Clearly, certain basis functions of the uniform B-spline are symmetrical to 

each other. Actually, any function )(, uN pi   can be reflected to )1(,1 uN pin −−−  at the middle point of the 

parametric space. We refer to this operation as to ref : 

 )1()(: ,1, uNuNref pinpi −→ −− ,  (18) 

 where kipk ≤≤− .  (19) 
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The set of non-zero functions )(, uN ppk− … )(, uN pk  at 5.00 1 <<≤≤ +kk uuu  can be cloned to  

)1(,1 uN pkn −−− … )1(,1 uN ppkn −−+− . In other words, there is no need to calculate non-zero functions for the 

second half of the parametric space, because they can be obtained from the first one. 

 

Figure 6. Basis functions of cubic uniform B-spline defined by 13 control points (17 knots) 

Figure 6 also depicts another important property of uniform B-spline. Pay attention to functions marked 
as red, they are identical: )8.0(...)4.0()3.0()2.0( 3,93,53,43,3 NNNN ==== . The set of non-zero functions at 

22.0=u  consists of four functions: )22.0(3,2N , )22.0(3,3N , )22.0(3,4N , and )22.0(3,5N . There is a set of 

functions with the same values at each interval ku , where 105 ≤≤ k : )22.0(3,2N  = )32.0(3,3N  = ... = 

)72.0(3,7N , )22.0(3,3N  = )32.0(3,4N  = ... = )72.0(3,8N , )22.0(3,4N  = )32.0(3,5N  = ... = )72.0(3,9N , and 

)22.0(3,5N  = )32.0(3,6N  = ... = )72.0(3,10N . Obviously, non-zero functions at arbitrary pp uuu 212 <≤−  can be 

repeated at ( )pnju −+ / , where )12()(1 −−−≤≤ ppnj . In this paper we refer to this operation as to rep : 

 ))/(()(: ,, pnjuNuNrep pjipi −+→ + ,  (20) 

 where 131 +−≤≤ pnj  for all pip 21 <≤− .  (21) 

However, u  values must be distributed in specific manner, in order to hit a required u−1  or 
( )pnju −+ / . This means that the chosen step u∆  must divide each non-zero knot interval into the same 

number of equal subintervals. If we consider that Ν∈κ  is a natural number, then step u∆  must satisfy: 

 
κ)(

1

pn
u

−
=∆ .  (22) 

3.3.2 Multiple Point on Curve Evaluation Strategies 
We suggest several NURBS evaluations strategies regarding given observations in Table 2. The strategy 

name corresponds to the case of the spline and to the basis function algorithm. The interval row indicates the 
bounds of the parametric space for basis clone operations that are given in the last table row (see expressions 
(18), (19), (20), and (21)).  

Table 2. NURBS curve evaluation strategies 

Strategy Case Interval Basis method Get point method Basis clone operation 

NURBS_ITS0 General 10 ≤≤ u  Basis_ITS0 GetPoint0  

NURBS_ITS1 General 10 ≤≤ u  Basis_ITS1 GetPoint1  

URBS_ITS1 Uniform 
5.00 <≤ u  Basis_ITS1 GetPoint1 ))(()1( ,,1 uNrefuN pipin =−−−  

5.0=u  Basis_ITS1 GetPoint1  

URBS_ITS1+U 
Uniform 

13 −≥ pn  

120 −<≤ puu  Basis_ITS1 GetPoint1 ))(()1( ,,1 uNrefuN pipin =−−−  

pp uuu 212 <≤−  Basis_ITSU GetPoint1 ))(())/(( ,, uNreppnjuN pipji =−++  

UBS_ITS1+U 

Uniform 

Non-rational 

13 −≥ pn  

120 −<≤ puu  Basis_ITS1 GetPoint_NR1 ))(()1( ,,1 uNrefuN pipin =−−−  

pp uuu 212 <≤−  Basis_ITSU GetPoint_NR1 ))(())/(( ,, uNreppnjuN pipji =−++  

 

Note that in order to apply uniform case optimizations, the step size u∆  must be set accordingly to the 
expression (22) before evaluation. An uniform non-rational spline is evaluated using the simplified method 
GetPoint_NR1 instead of GetPoint1 (expression (1) instead of  (8)). 
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4 Results 
Algorithms given in Section 3 were implemented using C# programming language and .NET 

framework. The performance tests were acquired on Intel Core2 Duo 1.86 GHz x2 CPU, 3.GB RAM machine. 
The evaluation of single point or function takes only few nanoseconds. This makes the comparison of evaluation 
time-effectiveness hardly possible. Therefore all evaluation algorithms were applied 105 times at different u . 
This procedure was performed several times and average calculation times were recorded. 

Recursive Cox-de Boor, Basis_ITS0, Basis_ITS1, and Basis_ITSU basis function evaluation 
algorithms were tested on the uniform 27 control point B-spline. The same algorithms and de Boor’s knot 
insertion method were employed to determine a single point on the curve. Calculation times are given in Figure 7 
and Figure 8 respectively. 
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n = 27 

p Recursive ITS0 ITS1 ITSU 
1 37 20 15 15 
2 135 34 26 19 
3 385 55 46 30 
4 940 79 78 42 
5 2105 100 103 58 
6 4806 129 142 77 
7 10470 156 176 92 
8 24751 195 224 111 

 

Figure 7. NURBS basis function calculation times in milliseconds 
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n = 27 

p Recursive DeBoor ITS0 ITS1 ITSU 
1 206 251 206 187 179 
2 340 404 247 233 225 
3 593 667 268 277 266 
4 1128 1022 320 311 279 
5 2311 1458 370 366 310 
6 4927 1968 429 431 360 
7 10976 2566 481 496 402 
8 25855 3253 543 574 460 

 

Figure 8. NURBS single point on curve evaluation times in milliseconds 

Calculation time of the recursive Cox-de Boor algorithm grows rapidly for every successive degree of 
B-spline. However, the ITS is noticeably less affected by the degree increment. De Boor’s knot insertion should 
be fast, because it has no basis function calculation phase. According to Figure 8, GetPoint_DeBoor overtakes 
recursive algorithm only when 4≥p , but is left far behind by the ITS. This happens because of a large number 

of scalar multiplications and conversions from 3D to 4D and back. 

The ITS takes less time in the basis function determination phase than in the position acquisition phase 
even when 8=p . Therefore performances of single point evaluation using Basis_ITS0, Basis_ITS1 or 

Basis_ITSU are very similar. Due to poor performance of recursive Cox-de Boor and de Boor’s knot insertion 
algorithms they were not included in multiple point evaluation. The evaluation of multiple points over entire 27 
control point NURBS curve was carried out using strategies given in Section 3.3.2. Results are given in Figure 9. 

The same strategies were applied to 18=n  control point and 9=n  control point curves. Performance 
patterns remain the same as in Figure 9, but URBS_ITS1+U and UBS_ITS1+U provided less time economy. In 
these cases, less control points mean fewer intervals where the operation rep  can be applied (see expressions 

(20) and (21)).  
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n = 27 

p NURBS_
ITS0 

NURBS_
ITS1 

URBS_ 
ITS1 

URBS_ 
ITS1+U 

UBS_ 
ITS1+U 

1 170 162 157 156 142 
2 211 213 197 189 170 

3 234 256 240 225 203 
4 279 295 271 252 231 
5 326 348 295 265 237 
6 382 409 342 310 278 
7 433 479 389 361 322 
8 491 557 444 424 381 

  

Figure 9. NURBS multiple points on curve evaluation times in milliseconds 

The implementation of ref  and rep  operations in evaluation of uniform rational B-spline saved from 

3.7% to 24.6% of calculation time (compare URBS_ITS1+U and NURBS_ITS1). The algorithm designed for 
uniform non-rational B-spline saved from 12.4% to 32.8% of calculation time. Also, URBS_ITS1+U and 
UBS_ITS1+U were respectively up to 18.7% and 27.3% more time-efficient in comparison to NURBS_ITS0. 

The evaluation of higher degree basis functions takes longer. In these cases ref  and rep  operations can 

save more time (compare URBS_ITS1+U and NURBS_ITS1 in Figure 9). There is one more fact to be taken 
into consideration. The percentage of saved calculation time depends on the number of NURBS control points. 
Accordingly to the expression (21), there are 13 +− pn  knot intervals where rep  operation can be applied. If 

13 −< pn , this optimization can not be implemented even if B-spline is uniform. 

5 Conclusions 
In this paper we analyzed three already known NURBS evaluation algorithms. Test results showed that 

the recursive Cox-de Boor formula is highly ineffective especially in the evaluation of higher degree splines. 
Although de Boor’s knot insertion method performed better while evaluating splines of the fourth and higher 
degree, it was significantly overtaken by inverted triangular scheme in all cases.  

Due to this discovery we composed several modifications of the inverted triangular scheme and few 
evaluation strategies designed for special cases of NURBS. Accordingly to the test results, the presented 
strategies saved up to 24.6% of evaluation time in the case of uniform B-spline, and up to 32.8% in the case of 
uniform non-rational B-spline. A significant gain of performance was observed during NURBS evaluation of the 
degree 4>p  with the number of control points greater or equal to 13 −p . 

The stated facts lead to a conclusion that time-efficiency of NURBS curve evaluation based on the 
inverted triangular scheme can be improved. This is achieved by recognizing uniform and non-rational cases and 
implementing evaluation strategies presented in this paper. Optimizations are especially effective in the 
evaluation of higher degree splines with a larger number of control points.  
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